WIRE WOUND CHIP INDUCTORS HCI SERIES

INTRODUCTION

Product: HCI Miniature SMD Inductor For Power Line

Size : 0805

The HCI series are low profile inductor used in notebook, PC, cellular phone backlight, inverter and etc.

The devices are designed smallest possible sizes and highest performance.

FEATURES

* Operating temperature -40 to +85°C.

* Excellent solderability and resistance to soldering heat.

* Suitable for reflow soldering.

* High reliability and easy surface mount assembly.

* Wide range of inductance values are available for flexible needs.

PART NUMBER

HCI	0805	F 7	Γ 1R0	K	- 🗆 🗆
1	2	3 Tan	ing 4	5	Internal Code

- 1 Product Type
- **2** Chip Dimension

Size (inch) mm	Length (L) (inch) mm	Width (W) (inch) mm	Thickness (T) (inch) mm	Terminal (S) (inch) mm	L1 (Ref.) mm	W1 (Ref.) mm	(t ₁) (Ref.) mm
0805 2012	(0.09 max.) (2.30 max.)	(0.06 max.) (1.50 max.)	(0.047 max.) (1.20 max.)	(0.020 ± 0.004) 0.50 ± 0.10	1.20	1.20	0.60

3 Material Type

F: Ferrite Material

4 Inductance Value

1R0 = 1.0 uH100 = 10 uH

5 Tolerance

 $\begin{array}{cccccccc} K & = & \pm & 10 \ \% \\ M & = & \pm & 20 \ \% \end{array}$

CHIP INDUCTOR SPECIFICATIONS

1 Scope

This specification applies to miniature wire wound inductors for power line of the following types used in electronics equipment:

2 Construction

*Configuration

& Dimension : Please refer to the attached figures and tables.

*Terminals : HCI series terminals shall consist of PdAg alloy followed by Nickel,

then solder platting for easier soldering.

3 Operating Temperature Range

Operating Temperature Range is the scope of ambient temperature at which the inductor can be operated continuously at rated current.

*Temp. Range : Ferrite Material : - 40°C to + 85°C

4 Ingredient of terminals electrode.

a) 1st layer : Ag/Pd b) 2nd layer : Nickel c) 3rd layer : Sn

5 Characteristics

Standard Atmospheric Conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

*Ambient Temperature : $25 \, ^{\circ}\text{C} \, \pm \, 2 \, ^{\circ}\text{C}$

*Relative Humidity : 60% to 70%

*Air Pressure : 86 Kpa to 106 Kpa

CHIP INDUCTOR SPECIFICATIONS

TEMPERATURE PROFILE

a Reflow temperature profile

(Temperature of the mounted parts surface on the printed circuit board)

Recommended Peak Temperature: 250°C Max

250°C up /within 10secs

Max. Reflow temperature: 260°C.

Gradient of temperature rise: av 1-4°C/sec Preheat: 160-190°C/within 90-120secs

220°C up /within 30-60secs

Composition of solder Sn-3Ag-0.5Cu

b Dip temperature

Solder bathtub temperature: 260°C max

within 5secs.

Preheating temperature: 100~130°C

deposit solder temperature.

Composition of solder Sn-3Ag-0.5Cu

c Soldering iron tip temperature : 350°C max / within 3 seconds.

WIRE WOUND CHIP INDUCTOR

	HCI 0805	(2012)	FERRIT	E SERI	ES		
Part No.	Inductance 1	Percent	Q^2	S.R.F. ³	RDC 4	Isat 5	Idc ⁶
	(uH)	Tolerance	Min	Min	Max	Max	Max
				(MHz)	(Ω)	(mA)	(mA)
HCI 0805 FT R47 □-□□	0.47 @ 100 KHz	K, M	10 @ 1 MHz	720	0.15	1600	1100
HCI 0805 FT R56 □-□□	0.56 @ 100 KHz	K, M	10 @ 1 MHz	680	0.17	1450	1050
HCI 0805 FT R68 □-□□	0.68 @ 100 KHz	K, M	10 @ 1 MHz	600	0.19	1300	1000
HCI 0805 FT R82 □-□□	0.82 @ 100 KHz	K, M	10 @ 1 MHz	550	0.20	1250	950
HCI 0805 FT 1R0 □-□□	1.0 @ 100 KHz	K, M	10 @ 1 MHz	500	0.30	1000	900
HCI 0805 FT 1R2 □-□□	1.2 @ 100 KHz	K, M	10 @ 1 MHz	350	0.27	1150	900
HCI 0805 FT 1R5 □-□□	1.5 @ 100 KHz	K, M	10 @ 1 MHz	230	0.35	850	700
HCI 0805 FT 1R8 □-□□	1.8 @ 100 KHz	K, M	10 @ 1 MHz	180	0.40	750	650
HCI 0805 FT 2R2 □-□□	2.2 @ 100 KHz	K, M	10 @ 1 MHz	140	0.45	700	580
HCI 0805 FT 2R7 □-□□	2.7 @ 100 KHz	K, M	10 @ 1 MHz	120	0.60	650	550
HCI 0805 FT 3R3 □-□□	3.3 @ 100 KHz	K, M	10 @ 1 MHz	90	0.70	600	430
HCI 0805 FT 3R9 □-□□	3.9 @ 100 KHz	K, M	10 @ 1 MHz	80	0.75	550	420
HCI 0805 FT 4R7 □-□□	4.7 @ 100 KHz	K, M	10 @ 1 MHz	70	0.80	500	400
HCI 0805 FT 5R6 □-□□	5.6 @ 100 KHz	K, M	10 @ 1 MHz	60	1.05	450	380
HCI 0805 FT 6R8 □-□□	6.8 @ 100 KHz	K, M	10 @ 1 MHz	50	1.15	420	370
HCI 0805 FT 8R2 □-□□	8.2 @ 100 KHz	K, M	10 @ 1 MHz	45	1.25	400	360
HCI 0805 FT 100 □-□□	10 @ 100 KHz	K, M	10 @ 1 MHz	40	1.50	370	330
HCI 0805 FT 120 □-□□	12 @ 100 KHz	K, M	10 @ 1 MHz	35	1.80	320	320
HCI 0805 FT 150 □-□□	15 @ 100 KHz	K, M	10 @ 1 MHz	22	1.90	300	300
HCI 0805 FT 180 □-□□	18 @ 100 KHz	K, M	10 @ 1 MHz	20	2.30	280	280
HCI 0805 FT 220 □-□□	22 @ 100 KHz	K, M	10 @ 1 MHz	18	2.50	250	250
HCI 0805 FT 270 □-□□	27 @ 100 KHz	K, M	10 @ 1 MHz	16	3.40	230	230
HCI 0805 FT 330 □-□□	33 @ 100 KHz	K, M	10 @ 1 MHz	15	3.80	210	210
HCI 0805 FT 390 □-□□	39 @ 100 KHz	K, M	10 @ 1 MHz	12	4.30	180	180
HCI 0805 FT 470 □-□□	47 @ 100 KHz	K, M	10 @ 1 MHz	10	4.70	150	150

- Inductance is measured in HP-4284A /4285A RF LCR meter with SMD-A fixture.
- 2. Q is measured in HP-4284A / 4285A RF LCR meter with SMD-A fixture.
- 3. SRF is measured in ENA E5071B network analyzer
- 4. RDC is measured in HP-4338B millohmeter.
- 5. Inductance drop 10% from the initial value.
- 6. For 25 °C Rise.

Unit weight = 0.0084g (for ref.)

HCI 0805 (2012) FERRITE SERIES

SPECIFICATION

	ITEM	CONDITION	SPECIFICATION
	Inductance and Tolerance Quality Factor	Measuring Frequency: As shown in Product Table Measuring Temperature: + 25 °C	Within Specified Tolerance
Mechanical Characteristics	Insulation Resistance	Measured at 100V DC between inductor terminals and center of case.	1000 mega ohms minimum
	Dielectric Withstanding Voltage	Measured at 500V AC between inductor terminals and center of case for a maximum of 1 minute.	No damage occurs when the test voltage is applied.
	Temperature Coefficient of Inductance (TCL)	Over - 40 °C to + 85 °C at frequency specified in Product Table.	+ 25 to 500 ppm / °C $TCL = \frac{L1 - L2}{L1(T1-T2)} \times 10^{6} \text{ (ppm /°C)}$
	Component Adhesion (Push Test)	The component shall be reflow soldered onto a P. C. Board ($240~^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 20 seconds). Then a dynometer force gauge shall be applied to any side of the component.	Minimum 1Kg
Electrical Characteristics	Drop Test	The inductor shall be dropped two times on the concrete floor or the vinyl tile from 1M naturally.	Change In Inductance: No more than 5% Change In Q:
	Thermal Shock Test	Each cycle shall consist of 30 minutes at -40 °C followed by 30 minutes at +85 °C with a 20-second maximum transition time between temperature extremes. Test duration is 10 cycles.	No more than 10% Change In Appearance: Without distinct damage

SPECIFICATION

	ITEM	CONDITION	SPECIFICATION
	Solderability	Dip pads in flux and dip in solder pot containing lead free solder at 240 °C \pm 5°C for 5 seconds.	A minimum of 80% of the metalized area must be covered with solder.
	Resistance to Soldering Heat	Dip the components into flux and dip into solder pot containing lead free solder at $260 ^{\circ}\text{C} \pm 5 ^{\circ}\text{C}$ for 5 ± 2 seconds.	Change In Inductance: No more than 5%
	Vibration (Random)	Inductors shall be randomly vibrated at amplitude of 1.5mm and frequency of 10 - 55 Hz: 0.04 G / Hz for a minimum of 15 minutes per axis for each of the three axes.	Change In Q: No more than 10%
Endurance Characteristics	Cold Temperature Storage	Inductors shall be stored at temperature of -40 °C \pm 2 °C for 1000hrs (+ 48 -0 hrs.) Then inductors shall be subjected to standard atmospheric conditions for 1 hour. After that, measurement shall be made.	Change In Appearance : Without distinct damage
	High Temperature Storage	Inductors shall be stored at temperature of 85 °C \pm 2 °C for 1000hrs (\pm 48 - 0hrs.) Then inductors shall be subjected to standard atmospheric conditions for 1 hour. After that, measurement shall be made.	
	Moisture Resistance	Inductors shall be stored in the chamber at 45 °C at 90 - 95 R. H. for 1000 hours. Then inductors are to be tested after 2 hours at room temperature.	Inductors shall not have a shorted or open winding.
	High Temperature with Loaded	Inductors shall be stored in the chamber at +85 °C for 1000 hours with rated current applied. Inductors shall be tested at the beginning of test at 500 hours and 1000 hours. Then inductors are to be tested after 1 hour at room temperature.	

PACKAGING INFORMATION

Packing Quantity

Туре	Pcs / Reel
HCI0805	2,000

Dimensions (unit: m/m)

Type	Chip Cavity		Insert Pitch	Tape Thickness		
	A	В	F	K	T	W
HCI0805	1.50	2.35	4.00	1.45	0.22	8.00

Blank Portions | Chip Cavity | Leader | Leader | Chip Cavity | Chip Cavi

Direction of tape feed

Top Tape Strength

The top tape requires a peel-off force of $0.2\ \text{to}\ 0.7\mbox{N}$ in the direction of the arrow as illustrated below.

Dimensions (unit: m/m)

TYPE	A	В	С
HCI0805	2.60	0.75	1.40

Recommended Pattern

